# [RW] Chapter 2.4: Induced Representations 

Shan Lu

October 14, 2020

## 1 Bimodule ${ }_{A} \mathrm{X}_{B}$

Definition 1.1. Let $B$ be $\mathrm{C}^{*}$-algebras and let $\mathrm{X}_{B}$ be a right Hilbert $B$-bimodule. That is, $\mathrm{X}_{B}$ is a complex vector space with a right $B$-action satisfying:
(i) $(x+y) \cdot a=x \cdot a+y \cdot a$,
(ii) $x \cdot(a+b)=x \cdot a+x \cdot b$,
(iii) $(x \cdot a) \cdot b=x \cdot(a b)$,
(iv) $(\lambda x) \cdot a=x \cdot(\lambda a)=\lambda(x \cdot a)$,
for all $a, b \in B, x, y \in \mathrm{X}_{B}$, and $\lambda \in \mathbb{C}$.

In addition, $\mathrm{X}_{B}$ has an $B$-valued the inner product $\langle\cdot, \cdot\rangle_{B}: \mathrm{X}_{B} \times$ $\mathrm{X}_{B} \rightarrow B$ satisfying
(i) $\langle x, \lambda y+\mu z\rangle_{B}=\lambda\langle x, y\rangle_{B}+\mu\langle x, z\rangle_{B}$,
${ }_{\text {(ii) }}\langle x, y \cdot a\rangle_{B}=\langle x, y\rangle_{B} a, \longrightarrow\langle a \cdot x, y\rangle=a_{A}\langle x, y\rangle$
(iii) $\langle x, y\rangle_{B}^{*}=\langle y, x\rangle_{B}$,
(iv) $\langle x, x\rangle_{B} \geq 0$ (as a positive element of $B$ ),
(v) $\langle x, x\rangle_{B}=0$ implies that $x=0$,
for all $x, y \in \mathrm{X}_{B}$, and $\lambda, \mu \in \mathbb{C}$.

Moreover, $\mathrm{X}_{B}$ is complete with respect to the norm defined by $\|x\|_{B}:=\left\|\langle x, x\rangle_{B}\right\|^{1 / 2}$.

Definition 1.2. Let $A$ be a $C^{*}$-algebra, we can similarly define a left Hilbert $A$-module $\mathrm{X}_{A}$ using left-hand versions of the properties in Definition 1.1.

Let $\mathrm{X}_{B}$ be a Hilbert $B$-module and let $A$ act as adjointable operators on $X_{B}$. That is, we have a $\mathrm{C}^{*}$-homomorphism of $\varphi: A \rightarrow \mathcal{L}\left(\mathrm{X}_{B}\right)$. We denote this left action of $a \in A$ on $x \in \mathrm{X}_{B}$ by $a \cdot x$. More explicitly, $a \cdot x=\varphi(a)(x)$. We denote the $A-B-$ bimodule by ${ }_{A} X_{B}$. Vepresentation $\pi: B \longrightarrow B\left(H_{\pi}\right)$
Goal: given a right Hilbert $B$-module $\mathrm{X}_{B}$ and an action of $A$ on $X_{B}$ as adjointable operators, we wish to convert a representation $\pi$ of $B$ on a Hilbert space $\mathcal{H}_{\pi}$ to a representation of $A$ on some Hilbert space using the bimodule ${ }_{A} \mathrm{X}_{B}$.

Motivating Example: Let $G$ be a unimodular locally compact group with closed (wimodular) subgroup $H$. We will study a left action o $C^{*}(G)$ on the right Hilbert module $X_{C^{*}(H),} B$ inducing representations of $C^{*}(H)$ "up" to representations of $C^{*}(G)$.

## 2 Induced representation

Notation: Let $\mathcal{H}$ and $\mathcal{K}$ be Hilbert spaces. We use $\mathcal{H} \otimes_{\text {alg }} \mathcal{K}$ to denote the algebraic (i.e. incomplete) tensor product of $\mathcal{H}$ and $\mathcal{K}$ as vector spaces, and use $\mathcal{H} \otimes \mathcal{K}$ t denote the tensor produt of Hilbert spaces. [RW] uses the notation $\mathcal{H} \odot \mathcal{K}$ for $\mathcal{H} \otimes_{\text {alg }} \mathcal{K}$.

Setup: Let $\mathrm{X}_{B}$ be a Hilbert $B$-module $A$ acting from the left as adjointable operators and let $\pi: B \rightarrow \mathcal{B}\left(\mathcal{H}_{\pi}\right)$ be a nodegenerate representation. We construct a representation of $A$ on the interior tensor product of $X_{B}$ and $\mathcal{H}_{\pi}$ (using $\pi$ ).
Definition 2.1. (interior tensor product of Hilbert C*-modules) Let $E$ be a Hilbert $A$-module and $F$ be a Hilbert $B$-module and let $\phi: A \rightarrow \mathcal{L}(F)$ be a $\mathrm{C}^{*}$-homomorphism. The interior tensor product $E \otimes_{\phi} F$ (using $\phi$ ) is the completion of the underlying vector space mod $\quad x a \otimes y=x \otimes \phi(a) y$ $\left(E \otimes_{\text {alg }} F\right) \backslash \operatorname{span}\left\{x a \otimes_{\mathrm{alg}} y-x \otimes_{\mathrm{alg}} \phi(a) y: x \in E, y \in F, a \in A\right\}$
with respect to the norm induced by the $B$-valued inner product

$$
\left\langle x_{1} \otimes y_{1}, x_{2} \otimes y_{2}\right\rangle_{B}=\left\langle y_{1}, \phi\left(\left\langle x_{1}, x_{2}\right\rangle_{A}\right) y_{2}\right\rangle_{B} .
$$

The interior tensor product $E \otimes_{\phi} F$ is a Hilbert $B$-module.

Example 2.2. By taking $E=\mathrm{X}_{B}, F=\mathcal{H}_{\pi}$, and $\phi=\pi$ in Definition 2.1, the interior tensor product of $\mathrm{X}_{B} \otimes_{\pi} \mathcal{H}_{\pi}$ (using $\pi$ ) is a right Hilbert $\mathbb{C}$-module (i.e., a Hilbert space). In [RW], $\mathrm{X}_{B} \otimes_{\pi} \mathcal{H}_{\pi}$ is denoted by $\mathrm{X} \otimes_{B} \mathcal{H}_{\pi}$, without explicitly mentioning interior tensor products. We adapt this notation. Hilbert space
Explicitly, as a Hilbert space, the inner product on $\mathrm{X} \otimes_{B} \mathcal{H}_{\pi}$ is characterized by

$$
\langle x \otimes h, y \otimes k\rangle=\left\langle\pi\left(\langle y, x\rangle_{B}\right) h, k\right\rangle .
$$



The tensor product is $B$-balanced in the sense that $(x \cdot b) \otimes h=$ $x \otimes \pi(b) h$ for all $b \in B$. For emphasis of such manipulations, we write $x \otimes_{B} y \in \mathrm{X} \otimes_{B} \mathcal{H}_{\pi}$ for the image of $x \otimes y \in \mathrm{X}_{B} \otimes_{\text {alg }} \mathcal{H}_{\pi}$.


$$
\pi: B \longrightarrow \gamma\left(H_{\pi}\right)
$$

Proposition 2.3 (RW, Proposition 2.66). With the setup as above, the formula $\operatorname{Ind} \pi: A \longrightarrow B\left(X \otimes_{B} H_{\pi}\right)$
$\operatorname{Ind} \pi(a)\left(x \otimes_{B} h\right):=(a \cdot x) \otimes_{B} h$,
$a \in A\}$
 $\leftarrow$ the Hilbert space $\mathrm{X} \otimes_{B} \mathcal{H}_{\pi}$. If X is nondegenerate as an $A$ -
module (i.e., $A \cdot \mathrm{X}$ is dense in X ), then $\operatorname{Ind} \pi$ is a nondegenerate representation of $A$ on $\mathrm{X} \otimes_{B} \mathcal{H}_{\pi}$.
Notation. Since Ind $\pi$ depends on both the Hilbert $B$-module $\mathrm{X}_{B}$ and the $\mathrm{C}^{*}$-homomorphism $A \rightarrow \mathcal{L}\left(\mathrm{X}_{B}\right)$ we are using, we write $\mathrm{X}-\operatorname{Ind}_{B}^{A} \pi, \operatorname{Ind}_{B}^{A} \pi$, or $\mathrm{X}-\operatorname{Ind} \pi$ for emphasis when needed.

$$
\rightarrow \varphi: A \rightarrow \mathcal{L}\left(X_{\mathbb{C}}\right)=B(\partial l)
$$

Example 2.4 Take $B=\mathbb{C}$ and consider Hilbert space $\mathrm{X}_{\mathbb{C}}=\mathcal{H}$ and let $\rho: A \rightarrow \mathcal{B}(\mathcal{H})$ be a representation. Let $\pi: \mathbb{C} \rightarrow \mathcal{B}\left(\mathcal{H}_{\pi}\right)$ be given by $\pi(\lambda)=\lambda 1$, where 1 is the identity operator on $\mathcal{H}_{\pi}$. Then $\mathscr{H} \otimes_{\mathbb{C}} \mathcal{H}_{\pi}$ is the Hilbert space tensor product $\mathcal{H} \otimes \mathcal{H}_{\pi}$ and Ind $\pi$ is given by Ind $\pi=\rho \otimes 1$, that is, Ind $\pi(a)=\rho(a) \otimes 1$. Hi bert space

$$
\begin{aligned}
& \checkmark\langle x \otimes h, y \otimes k\rangle=\left\langle\pi\left(\langle y, x)_{\mathbb{c}}\right) h, k\right\rangle \text { tensor product } \\
& =\left\langle\langle y, x\rangle_{\mathbb{C}} h, k\right\rangle \\
& H \otimes X_{C} \\
& =\langle x, y\rangle\langle h, k\rangle \\
& \text { id } \phi: A \rightarrow \mathcal{L}\left(\beta_{B}\right)
\end{aligned}
$$

Example 2.5. Gonsider $\mathrm{X}_{B}=B_{B}$ and $A=\mathcal{L}\left(B_{B}\right)=M(B)$ and a nondegenerate representation $\pi: B \rightarrow \mathcal{H}_{\pi}$. There is a unitary map from $\mathcal{B} \otimes_{B} \mathcal{H}_{\pi}$ to $\mathcal{H}_{\pi}$. and the induced representation of $A=M(B)$ on $\mathcal{H}_{\pi}$ is the usual extended representation of a the multiplier algebra.

$$
\begin{aligned}
& 4: B \rightarrow+\left(H_{1}\right)
\end{aligned}
$$

Induced representation is functorial: $\mathrm{X}-\operatorname{Ind}_{B}^{A}$ is a functor from the category of nondegenerate representations of $B$ and bounded intertwining operators to the corresponding category for $A$. More precisely:

Proposition 2.6 (RW, Proposition 2.69). Suppose $A$ acts nondegenerately as adjointable operators on a Hilbert B-module X, that

$$
\pi_{1}: B \rightarrow \mathcal{B}\left(\mathcal{H}_{1}\right) \quad \text { and } \quad \pi_{2}: B \rightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)
$$

are nondegenerate representations of $B$. Let $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a bounded intertwining operator:

$$
T\left(\pi_{1}(b) h\right)=\pi_{2}(b)(T h) .
$$

Then the transformation

$$
1 \otimes T:\left\{\begin{array}{lll}
\mathrm{X} \otimes_{\mathrm{alg}} \mathcal{H}_{1} & \mapsto & \mathrm{X} \otimes_{\mathrm{alg}} \mathcal{H}_{2} \\
x \otimes h & \mapsto & x \otimes(T h)
\end{array}\right.
$$

extends to a bounded operator $1 \otimes_{B}: \mathrm{X} \otimes_{B} \mathcal{H}_{1} \mapsto \mathrm{X} \otimes_{B} \mathcal{H}_{2}$ which intertwines $\mathrm{X}-\operatorname{Ind} \pi_{1}$ and $\mathrm{X}-\operatorname{Ind} \pi 2$.

The correspondence $T \mapsto 1 \otimes_{B} T$ is $*$-linear, and if $S: \mathcal{H}_{2} \rightarrow \mathcal{H}_{3}$ intertwines $\pi_{2}$ and $\pi_{3}$, then

$$
1 \otimes(S \circ T)=\left(1 \otimes_{B} S\right) \circ\left(1 \otimes_{B} T\right)
$$

3 Main example: ${ }_{C^{*}(G)} \mathrm{X}_{C^{*}(H)}$
3.1 (full) Group C*-algebra

Let $G$ be a unimodular locally compact group with Haar masure. $C_{c}(G)$ (the set of continuous $\mathbb{C}$-valued function on $G$ with compact support) is a $*$-algebra under

$$
\text { convolution } f * g=\int_{G} f(r) g\left(r^{-1} s\right) d r
$$

and
involution $\quad f^{*}(s)=\overline{f\left(s^{-1}\right)}$.

$$
\left(\sum_{g \in G} a_{g} g\right) *\left(\sum_{g^{\prime} \in G} \mid a_{g^{\prime}} g^{\prime}\right)=\sum_{n \in G}\left(\sum_{g \in G} a_{g} b_{g^{-1 h}}\right) h\left(\frac{f^{*}(s)=\overline{f\left(s^{-1}\right)} .}{\left(\sum_{g \in G} a_{g} g\right)^{*}=\sum_{g \in G}^{1} \bar{a}_{g} g^{-1}} \begin{array}{l}
\text { many } \\
\text { involution } \\
g \in G
\end{array}\right.
$$

Let $U: G \rightarrow \mathcal{U}(\mathcal{H})$ be a unitary presentation of $G$ denoted by $s \mapsto U_{s}$ such that $s \mapsto U_{s} h$ from $G$ to $\mathcal{H}$ is continuous for every $\overline{s \in G}$ and $h \in \mathcal{H}$. For each unitary representation $U$,

$$
\begin{aligned}
& \pi_{U}:\left\{\begin{array}{lll}
C_{c}(G) & \rightarrow & \mathcal{B}(\mathcal{H}) \\
f & \mapsto & \int_{G} f(s) U_{s} d s \\
\Uparrow_{U} & \left(\sum_{g \in G} a_{g} g\right)=\sum_{g \in G} a_{g} \cup(g)
\end{array}\right. \\
& \text { ration of } C_{c}(G) . \text { In particular, } \\
& \left\langle\pi_{U}(f) h, k\right\rangle_{\mathcal{H}}=\int_{G} f(r)\left\langle U_{r} h, k\right\rangle d r \quad \pi_{0}: C_{C}(G) \rightarrow \mathcal{B}(\mathcal{H})
\end{aligned}
$$

for all $f \in C_{c}(G)$, and $h, k \in \mathcal{H}$.

$$
\binom{U: G \longrightarrow U(H) A}{\pi_{U}: C_{C}(G) \longrightarrow B(H)} \text { non degenerate }
$$

The map $U \mapsto \pi_{U}$ is a bijection between the unitary representations of $G$ and the nondegenerate representations of $C_{c}(G)$.

Taking the closure of $C_{c}(G)$ with the universal norm:
$\|f\|_{C^{*}(G)}=\sup \left\{\left\|\pi_{U}(f)\right\|: U\right.$ if a unitary representation of $\left.G\right\}$,
$C^{*}(G):={\overline{C_{c}(G)}}^{C^{*}(G)}$ is a $\mathrm{C}^{*}$-algebra called the (full) group $\mathrm{C}^{*}$ algebra.
relied $L^{2}(G)$
$3.2 C^{*}(G) \mathrm{X}_{C^{*}(H)}$
Let $H$ be a (unimodular) closed subgroup of $G$. We construct a right Hilbert $C^{*}(H)$-module $\mathrm{X}_{C^{*}(H)}$ from $\overline{C_{c}(G) \text {. For any } b \in, ~}$ $C_{c}(H)$ and $f, g \in C_{c}(G)$, we define

$$
\text { madebe } \quad \underbrace{f \cdot b(s)}_{H}=\int_{H} f\left(s t^{-1}\right) b(t) d t \quad X_{C^{*}(H)}
$$

and

$$
\text { inner pod et }\langle f, g\rangle_{C_{c}(H)}(s)=\int_{G} \overline{f(r)} g(r s) d r \text {. }
$$

With the appropriate completions, $C_{c}(G)$ as a right $C_{c}(H)$ module gives a right Hilbert $C^{*}(H)$-module $\mathrm{X}_{C^{*}(H)}$.

Define action of $C^{*}(G)$ on $\mathrm{X}_{C^{*}(H)}$. We first define an action of $G$ on $C_{c}(G)$ (as a right $C_{c}(H)$-module): for $s \in G$, define $\overrightarrow{u_{s}}: C_{c}(G) \rightarrow C_{c}(G)$ by unitary" rep" of $G$

$$
u_{s}(f)(t):=f\left(s^{-1} t\right)
$$

for $f \in C_{c}(G)$ and $t \in G$. In particular, $u_{s}$ is isometric in the sense that

$$
\left\langle u_{s}(f), u_{s}(g)\right\rangle_{C_{c}(H)}=\langle f, g\rangle_{C_{c}(H)}
$$

and $u_{s}$ is adjointable with $u_{s}^{*}=u_{s^{-1}}$.
For $z \in C_{c}(G) \subset C^{*}(G)$ and $f \in C_{c}(G) \subset X_{C^{*}(I I)}$, we define

$$
(z \cdot f)(s):=\int_{G} z(r) u_{r}(f)(s) d r=\int_{G} z(r) f\left(r^{-1} s\right) d r
$$

This extends to a left action of $C^{*}(G)$ on the (complete) Hilbert $C^{*}(H)$-module $\mathrm{X}_{C^{*}(H)}$.

Induce representations of $C^{*}(H)$ to representations of $C^{*}(G)$ using $C^{*}(G) \mathrm{X}_{C^{*}(H)}$.



## Reference

[RW] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace $C^{*}$-Algebras, Mathematical Surveys and Monographs no. 60, American Mathematical Society, Providence RI, 1998.

