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1 Bimodule AXB

Definition 1.1. Let B be C*-algebras and let XB be a right
Hilbert B-bimodule. That is, XB is a complex vector space
with a right B-action satisfying:

(i) (x+ y) · a = x · a+ y · a,

(ii) x · (a+ b) = x · a+ x · b,

(iii) (x · a) · b = x · (ab),

(iv) (�x) · a = x · (�a) = � (x · a),

for all a, b 2 B, x, y 2 XB, and � 2 C.

In addition, XB has an B-valued the inner product h·, ·iB : XB⇥

XB ! B satisfying

(i) hx,�y + µziB = �hx, yiB + µhx, ziB,

(ii) hx, y · aiB = hx, yiBa,

(iii) hx, yi
⇤

B
= hy, xiB,

(iv) hx, xiB � 0 (as a positive element of B),

(v) hx, xiB = 0 implies that x = 0,

for all x, y 2 XB, and �, µ 2 C.

Moreover, XB is complete with respect to the norm defined by
kxk

B
:= khx, xiBk

1/2.

Definition 1.2. Let A be a C*-algebra, we can similarly de-
fine a left Hilbert A-module XA using left-hand versions of the
properties in Definition 1.1.
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Let XB be a Hilbert B-module and let A act as adjointable
operators on XB. That is, we have a C*-homomorphism of
' : A ! L (XB). We denote this left action of a 2 A on x 2 XB

by a · x. More explicitly, a · x = '(a)(x). We denote the A-B-
bimodule by AXB.

Goal: given a right Hilbert B-module XB and an action of A
on XB as adjointable operators, we wish to convert a represen-
tation ⇡ of B on a Hilbert space H⇡ to a representation of A
on some Hilbert space using the bimodule AXB.

Motivating Example: Let G be a unimodular locally com-
pact group with closed (unimodular) subgroup H. We will
study a left action of C⇤(G) on the right Hilbert module XC⇤(H),
inducing representations of C⇤(H) “up” to representations of
C

⇤(G).
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2 Induced representation

Notation: Let H and K be Hilbert spaces. We use H⌦algK to
denote the algebraic (i.e. incomplete) tensor product of H and
K as vector spaces, and use H ⌦ K to denote the tensor prod-
uct of Hilbert spaces. [RW] uses the notationH�K forH⌦algK.

Setup: Let XB be a Hilbert B-module A acting from the left
as adjointable operators and let ⇡ : B ! B (H⇡) be a nonde-
generate representation. We construct a representation of A on
the interior tensor product of XB and H⇡ (using ⇡).

Definition 2.1. (interior tensor product of Hilbert C*-modules)
Let E be a Hilbert A-module and F be a Hilbert B module and
let � : A ! L(F ) be a C*-homomorphism. The interior tensor
product E ⌦� F (using �) is the completion of the underlying
vector space

(E ⌦alg F )\ span{xa⌦alg y�x⌦alg�(a)y : x 2 E, y 2 F, a 2 A}

with respect to the norm induced by the B-valued inner product

hx1 ⌦ y1, x2 ⌦ y2iB = hy1,� (hx1, x2iA) y2iB.

The interior tensor product E ⌦� F is a Hilbert B-module.

Example 2.2. By taking E = XB, F = H⇡, and � = ⇡ in Def-
inition 2.1, the interior tensor product of XB ⌦⇡ H⇡ (using ⇡)
is a right Hilbert C-module (i.e., a Hilbert space). In [RW],
XB⌦⇡H⇡ is denoted by X⌦BH⇡, without explicitly mentioning
interior tensor products. We adapt this notation.

Explicitly, as a Hilbert space, the inner product on X⌦B H⇡ is
characterized by

hx⌦ h, y ⌦ ki = h⇡ (hy, xiB)h, ki.

The tensor product is B-balanced in the sense that (x · b)⌦h =
x ⌦ ⇡(b)h for all b 2 B. For emphasis of such manipulations,
we write x⌦B y 2 X⌦B H⇡ for the image of x⌦ y 2 XB ⌦algH⇡.
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Proposition 2.3 (RW, Proposition 2.66). With the setup as

above, the formula

Ind ⇡(a) (x⌦B h) := (a · x)⌦B h,

when extended linearly, gives a representation Ind ⇡ of A on

the Hilbert space X ⌦B H⇡. If X is nondegenerate as an A-

module (i.e., A ·X is dense in X), then Ind ⇡ is a nondegenerate

representation of A on X⌦B H⇡.

Notation. Since Ind ⇡ depends on both the Hilbert B-module
XB and the C*-homomorphism A ! L(XB) we are using, we
write X�IndA

B
⇡, IndA

B
⇡, or X�Ind ⇡ for emphasis when needed.

Example 2.4. Take B = C and consider Hilbert space XC = H

and let ⇢ : A ! B (H) be a representation. Let ⇡ : C ! B(H⇡)
be given by ⇡(�) = �1, where 1 is the identity operator on H⇡.
Then H⌦CH⇡ is the Hilbert space tensor product H⌦H⇡ and
Ind ⇡ is given by Ind ⇡ = ⇢⌦ 1, that is, Ind ⇡(a) = ⇢(a)⌦ 1.

Example 2.5. Consider XB = BB and A = L (BB) = M(B) and
a nondegenerate representation ⇡ : B ! H⇡. There is a unitary
map from B ⌦B H⇡ to H⇡, and the induced representation of
A = M(B) on H⇡ is the usual extended representation of a the
multiplier algebra.
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Induced representation is functorial: X � IndA
B

is a functor
from the category of nondegenerate representations of B and
bounded intertwining operators to the corresponding category
for A. More precisely:

Proposition 2.6 (RW, Proposition 2.69). Suppose A acts non-

degenerately as adjointable operators on a Hilbert B-module X,
that

⇡1 : B ! B(H1) and ⇡2 : B ! B(H2)

are nondegenerate representations of B. Let T : H1 ! H2 be a

bounded intertwining operator:

T (⇡1(b)h) = ⇡2(b) (Th) .

Then the transformation

1⌦ T :

(
X⌦alg H1 7! X⌦alg H2

x⌦ h 7! x⌦ (Th)

extends to a bounded operator 1⌦B : X⌦BH1 7! X⌦BH2 which

intertwines X� Ind ⇡1 and X� Ind ⇡2.

The correspondence T 7! 1⌦BT is ⇤-linear, and if S : H2 ! H3

intertwines ⇡2 and ⇡3, then

1⌦ (S � T ) = (1⌦B S) � (1⌦B T ) .
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3 Main example: C⇤(G)XC⇤(H)

3.1 (full) Group C*-algebra

Let G be a unimodular locally compact group with Haar mea-
sure. Cc(G) (the set of continuous C-valued function on G with
compact support) is a ⇤-algebra under

f ⇤ g =

Z

G

f(r)g
�
r
�1
s
�
dr,

and
f
⇤(s) = f (s�1).

Let U : G ! U(H) be a unitary presentation of G denoted by
s 7! Us such that s 7! Ush from G to H is continuous for every
s 2 G and h 2 H. For each unitary representation U ,

⇡U :

(
Cc(G) ! B(H)

f 7!
R
G
f(s)Usds

is a ⇤-representation of Cc(G). In particular,

h⇡U(f)h, kiH =

Z

G

f(r)hUrh, kidr

for all f 2 Cc(G), and h, k 2 H.

The map U 7! ⇡U is a bijection between the unitary represen-
tations of G and the nondegenerate representations of Cc(G).

Taking the closure of Cc(G) with the universal norm:

kfk
C⇤(G) = sup{k⇡U(f)k : U if a unitary representation of G},

C
⇤(G) := Cc(G)

C
⇤(G)

is a C*-algebra called the (full) group C*-
algebra.
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3.2 C⇤(G)XC⇤(H)

Let H be a (unimodular) closed subgroup of G. We construct
a right Hilbert C⇤(H)-module XC⇤(H) from Cc(G). For any b 2

Cc(H) and f, g 2 Cc(G), we define

f · b(s) =

Z

H

f
�
st

�1
�
b(t)dt

and

hf, giCc(H)(s) =

Z

G

f(r)g(rs)dr.

With the appropriate completions, Cc(G) as a right Cc(H)-
module gives a right Hilbert C⇤(H)-module XC⇤(H).

Define action of C⇤(G) on XC⇤(H). We first define an action
of G on Cc(G) (as a right Cc(H)-module): for s 2 G, define
us : Cc(G) ! Cc(G) by

us(f)(t) := f
�
s
�1
t
�

for f 2 Cc(G) and t 2 G. In particular, us is isometric in the
sense that

hus(f), us(g)iCc(H) = hf, giCc(H)

and us is adjointable with u
⇤

s
= us�1.

For z 2 Cc(G) ⇢ C
⇤(G) and f 2 Cc(G) ⇢ XC⇤(H), we define

(z · f) (s) :=

Z

G

z(r)ur(f)(s)dr =

Z

G

z(r)f
�
r
�1
s
�
dr.

This extends to a left action of C⇤(G) on the (complete) Hilbert
C

⇤(H)-module XC⇤(H).

Induce representations of C⇤(H) to representations of C⇤(G)
using C⇤(G)XC⇤(H).
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